Nanoscale Transistors

Device Physics, Modeling and Simulation
de

,

Éditeur :

Springer

Paru le : 2006-06-18

Silicon technology continues to progress, but device scaling is rapidly taking the metal oxide semiconductor field-effect transistor (MOSFET) to its limit. When MOS technology was developed in the 1960's, channel lengths were about 10 micrometers, but researchers are now building transistors with ch...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
94,94
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos


Éditeur

Collection
n.c

Parution
2006-06-18

Pages
218 pages

EAN papier
9780387280028

Auteur(s) du livre


Mark S. Lundstrom is the Scifres Distinguished Professor of Electrical and Computer Engineering at Purdue University where he also directs the NSF Network for Computational Nanotechnology. His current research interests center on the physics of semiconductor devices, especially nanoscale transistors. His previous work includes studies of heterostructure devices, solar cells, heterojunction bipolar transistors and semiconductor lasers. During the course of his Purdue career, Lundstrom has served as director of the Optoelectronics Research Center and assistant dean of the Schools of Engineering. He is a fellow of both the Institute of Electrical and Electronic Engineers (IEEE) and the American Physical Society and the recipient of several awards for teaching and research — most recently the 2002 IEEE Cledo Brunetti Award and the 2002 Semiconductor Research Corporation Technical Achievement Award for his work with his colleague, S. Datta, on nanoscale electronics. Jing Guo is an assistant professor of Electrical and Computer Engineering at University of Florida, Gainesville. His has worked on the theory, modeling and simulation of a variety of nanotransistors, including silicon nanotransistors, carbon nanotube transistors, and single electron transistors, in close collaboration with experimentalists. His current research interests focus on modeling and simulation of nanoscale devices, carbon nanotube electronics and optoelectronics, quantum transport, physics of nanoscale transistors, and parallel computation.

Caractéristiques détaillées - droits

EAN PDF
9780387280035
Prix
94,94 €
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
15421 Ko

Suggestions personnalisées