Multivariate Statistical Machine Learning Methods for Genomic Prediction

, ,

Éditeur :

Springer

Paru le : 2022-01-14

This book is open access under a CC BY 4.0 licenseThis open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the requ...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
Gratuit
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos


Éditeur

Collection
n.c

Parution
2022-01-14

Pages
691 pages

EAN papier
9783030890094

Dr. Osval Antonio Montesinos López earned a PhD in Statistics and Biometry from the University of Nebraska-Lincoln, USA, in 2014.  He is currently a Professor of Statistics, Probability and Statistical Learning Methods at the Facultad de Telemática, University of Colima, México. His areas of interest include the development of novel genomic prediction models for plant breeding, high-dimensional data analysis, generalized linear mixed models and Bayesian analysis, multivariate analysis and experimental designs. He has contributed univariate and multivariate genomic prediction models for predicting breeding values in plants with normal, binary, count and ordinal phenotypes.Dr. Abelardo Montesinos López holds a PhD in Probability and Statistics from the Centro de Investigación en Matemáticas (CIMAT), Guanajuato, México.  He is currently a Professor of Statistical Interference, Probability and Statistical Learning Methods at the Departamento de Matemáticas, CentroUniversitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Mexico. His areas of interest are: development of novel genomic prediction models for plant breeding, high dimensional data analysis, generalized linear mixed models, survival analysis, Bayesian analysis and multivariate analysis. He has contributed univariate and multivariate genomic prediction models for predicting breeding values in plants with normal, binary, count and ordinal phenotypes.Dr. José Crossa is a distinguished Scientist at the Biometrics and Statistics Unit of the International Maize and Wheat Improvement Center (CIMMYT). He has contributed to the statistical analyses of plant breeding trials with an emphasis on modeling genotype x environment interactions, QTL x environment interactions and genomic x environment interactions. He has significantly advanced the integration of essential factors such as pedigree and trial data into genomic selection for crop breeding, by creating and describing sophisticated statistical models of proven effectiveness that have since been widely adopted. He is a Fellow of the Agronomy Society of America and of the Crop Science Society of America, Member of the Mexican Academy of Science, Member of the Mexican National Research System of the National Council of Research and Technology, invited professor at Universities in Mexico and Uruguay, and Adjunct Professor at the Department of Statistics and Department of Plant Science at the University of Nebraska-Lincoln, USA.

Caractéristiques détaillées - droits

EAN PDF
9783030890100
Prix
0,00 €
Nombre pages copiables
6
Nombre pages imprimables
69
Taille du fichier
12851 Ko
EAN EPUB
9783030890100
Prix
0,00 €
Nombre pages copiables
6
Nombre pages imprimables
69
Taille du fichier
31652 Ko

Suggestions personnalisées